Általános ismeretek

A rozsdamentes acélokról általában

Az acél a vas legfontosabb ötvözete, fő összetevője a szén, amiből legfeljebb 2,11 tömegszázalékot tartalmaz. Ez az acél egyik definíciója. A másik definíció szerint az acél olyan vasalapú ötvözet, melyet képlékenyalakítással lehet megmunkálni (kovácsolni, hengerelni stb.). Ebben a megfogalmazásban nem kritérium a szén jelenléte, noha a szén a vas legáltalánosabb ötvöző anyaga. Ötvözőként sok más elem is használatos. A szén és más elemek növelik az acél szilárdságát, egyben csökkentik képlékenységét. Különböző fajta ötvözőkkel az acél olyan tulajdonságait lehet megváltoztatni, mint a keménység, rugalmasság, hajlékonyság, szilárdság, hőállóság, savállóság, korróziómentesség. Ha az acél magasabb széntartalommal rendelkezik a vasnál keményebb, ám ridegebb lesz, ha a hőmérsékletet csökkentjük, az anyag szilárdsága is csökken. Az acél olvadáspontja: 1370°C.

A vas és a króm sikeres kombinációja

A XX. század hajnaláig a vas és acél történetében a fő probléma a korrózióállóság volt, amelynek megoldására egy bizonyos mennyiségű krómot adtak az acél keverékbe, amit már Henry Le Chatelier kísérleti munkáiban csaknem 100 évvel korábban is előre meglátott. Ahhoz, hogy egy acélt a rozsdamentes kategóriába soroljanak, legalább 10,5% krómot kell tartalmazni, és kevesebb, mint 1,2% szenet (EN10020. számú szabvány). A rozsdamentes acélok népes családjához több mint 200 féle minőség tartozik. A krómon kívül tipikus ötvözeti elemek még a nikkel, a molibdén, a réz, a titán, a nióbium és a nitrogén. Nikkellel leginkább azért ötvözik, hogy javítsák a rozsdamentes acél alakíthatóságát és nyújthatóságát. Ezeknek az elemeknek az ötvözésekor más kristályszerkezetek jönnek létre, ezáltal a megmunkálásnál, formázásnál, hegesztésnél stb. más tulajdonságok válnak lehetségessé. Sok fajta rozsdamentes acélt fejlesztettek ki annak érdekében, hogy ellenálljanak a különböző korróziót okozó környezetnek és munkakörülményben, ezáltal biztonságossá téve a gyárakat, hosszabb élettartamúvá az építményeket és higiénikussá az ételünket. Még rendszereken belül is alkalmazzák a rozsdamentes acélt az autók és hőerőművek által kibocsátott gázok tisztítására.

Ezen kívül a rozsdamentes acél elhasználódás után újrahasznosítható, be lehet olvasztani és valami újat készíteni belőle.

EURÓPAI SZABVÁNYOK

Az „általános használatú” rozsdamentes acélokra vonatkozó fő szabvány az EN 10088. számú. Ez a szabvány két rendeltetési célt szolgál:

A képletes megnevezés

Az EN 10027. számú, az ”acélok megnevezési rendszerével” foglalkozó szabvány szerint a rozsdamentes acélok képletes megnevezése az „X” betűjellel kezdődik, és olyan acélokra vonatkozik, amelyek legalább egy ötvöző elemet tartalmaznak 5%-nál magasabb tartalommal. Ezt a betűjelet követi a széntartalom x 100, majd az ötvöző elemek vegyjele a tartalmuk szerinti csökkenő sorrendben. Ezt követően jelzik az elemeknek az átlagát, kötőjellel elválasztva, ugyanabban a csökkenő sorrendben.

Példák: X12Cr13 - X2CrNiMo17-12-2

A számszerű megnevezés

Öt számjegyet tartalmaz: az első kettő az 1.4; a harmadik egy vegyi összetételt figyelembe vevő számjegy, míg az utolsó kettőt önkényesen rendelik hozzá.

1.40xx: Rozsdamentes acél, amelyben a Ni % < 2,5 

      Nem tartalmaz Mo, Nb illetve Ti elemeket

1.41xx: Rozsdamentes acél, amelyben a Ni % < 2,5

      Tartalmaz Mo-t és nem tartalmaz Nb illetve Ti elemeket

1.43xx: Rozsdamentes acél, amelyben a Ni % > 2,5 

      Nem tartalmaz Mo, Nb illetve Ti elemeket

1.44xx: Rozsdamentes acél, amelyben a Ni % > 2,5 

      Tartalmaz Mo-t és nem tartalmaz Nb illetve Ti elemeket

1.45xx: Rozsdamentes acél, amely különleges adalékokat tartalmaz.

Példák számszerű megnevezésekre: 1.4000 – 1.4404 – 1.4301 – 1.4006

MINŐSÉG ÉS TULAJDONSÁG SZÉLES VÁLASZTÉKA

A rozsdamentes acélokat négy fő családba sorolják a műszaki, valamint a szabványosítási szempontok szerint kohászati felépítésük alapján – összekötve a különféle ötvöző elemek típusával és mennyiségével.

Ausztenites acél

Az ausztentites a legszélesebben alkalmazott rozsdamentes acélfajta. Az összes acélfajta közül ez a típus rendelkezik a legnagyobb korrózióálló képességgel, mely molibdén és réz hozzáadásával még tovább növelhető. Fontos tulajdonsága a nyújthatóság és szívósság. Legalább 7%-os nikkel tartalma van, ami az acél szerkezetet teljesen ausztenitessé teszi, ezáltal nyújtható lesz valamint nem mágneses tulajdonságot és jól hegeszthetőséget eredményez. Az ausztenites rozsdamentes acélt széles körűen alkalmazzák a háztartási eszközök, tartályok, ipari csövek és edények, építészeti homlokzatok és építkezési szerkezetek gyártása során. Az alapösszetétel további elemek hozzáadásával módosítható, így fokozható:

- a korrózióálló képesség (króm, molibdén, réz, szilícium, nikkel)

- a szilárdsági tulajdonságok (nitrogén)

- a megmunkálhatóság (kén, szelén, foszfor, ólom, réz)

- a hegesztés-repedési ellenálló képesség (mangán)

- a pontkorrózió és réskorrózió ellenálló képesség (molibdén, szilícium, nitrogén)

- a korróziós repedési ellenálló képesség (foszfor, arzén, antimon-tartalomkorlátozás)

- a kúszószilárdság (molibdén, titán, nióbium, bór)

- a hőállóság (króm, alumínium, szilícium, nikkel)

Ferrites acél

A ferrites rozsdamentes acél tulajdonságai hasonlóak a lágy acél tulajdonságaihoz, de a magasabb krómtartalma miatt jobb a korrózió állósága. Mágneses és viszonylag jól nyújtható. Alkalmazható a vegyiparban, hidrogén-nitrátos környezetben, légtechnikában és az építészetben. Nem alkalmazható bizonyos ipari atmoszférák esetén és hegesztett szerkezetekben sem.

Martenzites acél

A martenzites rozsdamentes acél leginkább 11%-től 13%-ig tartalmaz krómot. Egyszerre erős és kemény, hőkezeléssel edzhető; mérsékelt a korrózió állósága. Felhasználható olyan környezetben, ahol ecetsav, benzoesav, olajsav, karbonátok, nitrátok és lúgok vannak jelen. Az emelkedő hőmérséklettel azonban az ellenálló képességük csökken. Az atmoszférikus korrózióálló képesség csak nagyon tiszta légkörben érvényesül.

Ausztenites-ferrites acél (duplex)

Az ausztenites-ferrites rozsdamentes acélnak ferrites és ausztenites rács szerkezete van – innen a közneve: duplex rozsdamentes acél. Ebben az acélban van egy kevés nikkel a részleges ausztenites rácsszerkezet érdekében. A magas bróm- és molibdén-tartalomnak köszönhetően, kiemelkedő képességekkel rendelkezik a korrózió és a repedések ellen. Mikroszerkezete nagy korrózióálló képességet biztosít nyomás alatti törés és erózió esetén. A duplex acélokat leggyakrabban a petrokémiai-, papír-, cellulóz- és hajóépítő ipar hasznosítja.

ÖTVÖZŐK

A leggyakrabban használt ötvözőelemek közül a nikkel és a mangán az acél szilárdságát növeli, az ausztenitet kémiailag stabilabbá teszi, keménységét és olvadáspontját növeli, és ezzel a szilárdsága magasabb hőmérsékleten javul (hőálló acél). A vanádium ugyancsak növeli a keménységet és a kifáradással szembeni ellenállást. Nagy mennyiségű króm és nikkel az acélt rozsdamentessé (alacsony hőmérsékleten korrózióállóvá), savállóvá teszi. A hőálló acélok nagy hőmérsékleten is kevéssé oxidálódnak, amit króm, alumínium és szilícium ötvözésével érnek el. Az ilyen acélok felületén hibátlan rácsú, tömör spinell-réteg képződik (például FeCr2O4 alakjában). A volfrám a cementit alakulására van hatással, ötvözése esetén a martenzitté alakulás kisebb edzési sebesség mellett is végbemegy, ezek a gyorsacélok, melyeket nagyteljesítményű forgácsolószerszámokhoz használnak. A nitrogén, a kén és a foszfor az acélt törékennyé teszi, ezért ezeket a szennyezőket általában igyekeznek eltávolítani az acélgyártás folyamán. Az ötvözés folyékony állapotban történik, amikor az ötvözőfém és az alapfém egységes oldatot képeznek, sűrűség alapján nem különülnek el egymástól. Megszilárdulás után ez az oldat megmarad, ezért az ötvözeteket úgy kell tekinteni, mint fémek megszilárdult oldatát, amelyek vegyes kristályok formájában kristályosodnak.

HŐKEZELÉSI TECHNOLÓGIÁK

A hőkezelés célja a fémek, ötvözetek bizonyos alaptulajdonságainak, többnyire mechanikai tulajdonságainak módosítása (keménység, szívósság stb.). A hőkezelés alapformulája szerint a fémet felmelegítik adott hőmérsékletre, ott hőntartják, majd meghatározott sebességgel lehűtik. Hőkezelés során a fém mindig szilárd halmazállapotú, az eljárás során összetétele nem változik meg, legfeljebb a felszíni rétegek kissé (van olyan hőkezelés is, amelynek a célja éppen a felületi kéreg összetételének módosítása).

A hőkezelés elemi műveletei az izzítás, az edzés és a megeresztés. Az izzítás az utána következő lehűtés sebessége szerint lehet lágyító vagy normalizáló. Az összetettebb hőkezelési eljárások ezekből az elemi műveletekből állnak.

1. Lágyító hőkezelés

Ha az acél a megkívántnál nagyobb keménységű, a forgácsolhatóság, hidegalakíthatóság stb. érdekében lágyítani kell. Az acél nagyobb keménységét egyrészt a hidegalakított termék alakítási keménysége okozza, másrészt a melegalakítás illetve hőkezelés lehűtése olyan sebességű volt, hogy az acél részlegesen beedződött. A lágyítás tehát hidegalakított termékeknél és főleg ötvözött acéloknál szükséges, melyeknél a melegalakításkor történő levegőn való lehűlés is részleges edződést okozhat.

1.1. Újrakristályosító lágyítás

A hidegalakított termékek hevítésekor az alakított szemcsék rovására alakítatlan szemcsék fejlődnek. A lágyított termékek tulajdonságait a kialakult szemcseméret határozza meg. Ez pedig a hidegalakítás mértékétől, a hevítés hőmérsékletétől és időtartamától függ. Általában finomszemcsés állapotra kell törekedni, de például trafólemezeknél a mágneses tulajdonságok annál kedvezőbbek, minél durvábbak a szemcsék. Sok esetben részleges lágyítást kell alkalmazni, tehát az újrakristályosítást csak részlegesen kell megvalósítani. Így lehet például a rugókeményre húzott huzalokból félkemény huzalokat előállítani. A lágyítás sikerének ellenőrzésére keménységvizsgálat illetve szakító vizsgálat alkalmazható, alakítási technológiai próbákkal kiegészítve.

1.2. Teljes lágyítás

Edzett vagy részlegesen beedződött darabok esetén célszerű lehet az egyensúlyi állapot visszaállítása ha, további forgácsolás vagy hőkezelés szükséges. Ezt teljes lágyítással lehet megvalósítani Az acélt gammaállapotnak megfelelő hőmérsékletre kell hevíteni, majd kemencében lassan lehűteni a gamma-alfa átalakulás befejeződéséig, kb. 600 °C fokig. A lágyulás a hűtési sebességtől függ. Ezt követően levegőn történhet a további hűtés. A teljes lágyítást ötvözött melegalakított termékek forgácsolhatósága érdekében szokták alkalmazni. Sikerének ellenőrzése az előirt Brinell keménység kontrollálásával történik.

1.3. A 700 °C fok alatti lágyítás

A készre forgácsolt, de sikertelenül hőkezelt (pld. nemesített) alkatrészeket újabb hőkezelés előtt lágyítani kell. Teljes lágyítás esetén gamma-alfa átalakulás megy végbe, ami méretváltozást illetve vetemedést okozhat. Ezen kívül a nagy hőmérséklet miatt a felületi revésedés illetve dekarbonizálódás is káros lehet. Ezek elkerülésére a lágyítást az ausztenitesedést még nem okozó, nagy hőmérsékleten végzik, hosszabb hőntartással. A lágyulás a hőntartás alatt következik be, az edzett vagy részlegesen beedződött szövet egyensúlyi irányban történő megváltozásával. Ez az eljárás nyilván drágább, mint a teljes lágyítás.

2. Normalizáló hőkezelés

A normalizáló hőkezelés ausztenitesítésből és azt követően levegőn történő lehűtésből áll. Ez ötvözetlen vagy gyengén ötvözött acélok esetében közel egyensúlyi állapotot hoz létre. Természetesen a szerkezet finomabb szemcsés, mint teljes lágyítás után. A normalizálás fő alkalmazási területe a melegalakított /hengerelt, kovácsolt/ termékek adagon belüli tulajdonságszórásának mérséklése.

A tulajdonságokat ugyanis a kémiai összetétel és a szerkezet határozza meg. Adagon belül a kémiai összetétel azonosnak tekinthető. A melegalakítási technológiák során viszont az adagon belül az egyes darabok alakítási hőmérséklete, alakítás utáni lehűtési sebessége, stb. lényeges eltéréseket mutathat. Ezért az egyes darabok szerkezete és így tulajdonságai sem azonosak. Az adag darabjait együtt újra ausztenitesítve és azonos sebességgel lehűtve a szerkezet azonossá válik, így a tulajdonságszórás az adagon belül mérséklődik.

A normalizálással létrehozott közel egyensúlyi, de az egyensúlyinál finomabb szemcsés állapot előnyös lehet például a forgácsolhatóság egyenletessége szempontjából is. Az olcsóbb normalizálás így sok esetben helyettesítheti a drágább lágyító technológiákat.

Indukciós edzés előtt a finom szerkezet és a mag tulajdonságai szempontjából általában nemesítést alkalmaznak. Mérsékeltebb igények esetén a nemesítés helyettesíthető a sokkal olcsóbb normalizálással.

3. Feszültségcsökkentő hőkezelések

A különböző technológiák alatt a gyártmányokban káros saját feszültségek keletkezhetnek. Ezek két szempontból károsak. Egyrészt hozzáadódnak az üzemi terhelés okozta feszültségekhez, ezzel csökkentik a terhelhetőséget, illetve élettartamot, másrészt hosszú idő alatt a saját feszültségek relaxálása miatt az alkatrész méretváltozása vagy vetemedése következhet be. Célszerű tehát a saját feszültségeket feszültségcsökkentő hőkezelésekkel relaxáltatni.

A leggyakoribb feladatok: 

- Öntvények saját feszültségeinek relaxáltatása forgácsoló megmunkálás előtt, hogy a vetemedés még a megmunkálás előtt következzen be. 

− Durva forgácsolás utáni és végső megmunkálás közötti feszültségmentesítés, hogy a vetemedés a végső méret kialakulása előtt menjen végbe. 

− Hidegalakított termékek, vagy karcsú termékek hidegalakításos egyengetése utáni relaxáltatás, hogy az alakítási feszültségek relaxációja ne a raktározás vagy felhasználás során következzen be vetemedést okozva. 

− Edzett alkatrészek illetve szerszámok feszültségcsökkentése a makroszkópikus és mikroszkópikus saját feszültségek relaxáltatásával, a törékenység csökkentése illetve az élettartam növelése érdekében. 

− A saját feszültségek leépülése annál gyorsabb és tökéletesebb, minél magasabb hőmérsékleten történik a hevítés. A feszültségek újbóli keletkezésének megakadályozása érdekében a hevítést igen lassú lehűtés kell, hogy kövesse. 

− A relaxáltató hőmérséklet megválasztásánál általános szabály, hogy azt a legmagasabb hőmérsékletet kell választani, melyen még nem mennek végbe egyéb szempontok szerinti káros folyamatok. Ennek megfelelően például: 

Ezek alapján az öntvények és hegesztett szerkezetek feszültségcsökkentésére akár 650… 680 °C is alkalmazható, de nemesített termékek esetén nem szabad a megeresztési hőmérséklet fölé hevíteni. Az edzett és hidegalakított termékek már 250 °C fok fölött kezdenek lágyulni, kb. ez tekinthető, tehát a határhőmérsékletnek.

4. Nemesítés

A nemesítés összetett hőkezelés, edzésből és megeresztésből áll. Célja a finomszemcsés, úgynevezett szferoidites szövet előállítása. Ez az edzett szövet megeresztés alatti elbomlásával jön létre. Minél nagyobb a megeresztés hőmérséklete és minél hosszabb a hőntartás, a bomlási folyamat annál tökéletesebb. Ennek hatására a megeresztési hőmérséklet növelésével csökken a keménység és a szilárdság, ezzel szemben nő az ütőmunka és az alakíthatóság. Végül a hőmérséklet növelésével elérhető az edzés hatásának teljes megszűnése, visszaáll a lágyított állapot. Adott acélminőség (kémiai összetétel) esetén a nemesítő hőkezelés paramétereit úgy kell meghatározni, hogy az előirt teljesítendő szilárdság és ütőmunka értéke is megfelelő legyen. Tehát bonyolult optimalizálási feladat megoldása szükséges.

4.1. Edzés

Az edzés ausztenitesítésből és ezt követő edző hatású lehűtésből áll. Az ausztenitesités hőmérsékletét és idejét valamint a lehűtés sebességét kompromisszumos módon lehet meghatározni, adott acélminőség és gyártmány esetében.

Az ausztenitesitéssel szemben az lenne a követelmény, hogy minél finomabb szemcsenagyságú és minél homogénebb szerkezet alakuljon ki. Ebből a szerkezetből hozható létre ugyanis a legnagyobb keménységű de egyben igen finom martenzit, melyből megeresztéssel a legkedvezőbb tulajdonságú finom szferoidit nyerhető. A vázolt követelmény ellentmondást tartalmaz, mert az ausztenit annál homogénebb, minél nagyobb az izzítás hőmérséklete. Ugyanakkor a hőmérséklet növelésével durvul az ausztenit szemcsenagysága. Az ausztenitesités paramétereit tehát esetenként kell optimalizálni, úgy, hogy a megvalósítható hűtési sebesség esetén a legkedvezőbb szerkezet jöjjön létre, melyből megeresztéssel a legkedvezőbb szilárdság/ütőmunka arány hozható létre

A lehűlési sebesség illetve program (lépcsős hűtés) szintén optimalizálást igényel. Ugyanis minél nagyobb a lehűlési sebesség, annál nagyobb méretű darabok esetében hozható létre az edzett (martenzites) szövet. Nagyméretű darabok annál vastagabb felületű rétegében teljesülhet ugyanez (átedződés). Ugyanakkor a hűtési sebesség növelésével nő az edzési repedékenység veszélye. Nyilván az edzési repedést még éppen nem okozó maximális hűtési sebességre célszerű törekedni.

Az edzés helyes technológiáját tehát igen sok szempont együttes figyelembevételével lehet meghatározni egy konkrét anyagminőségre és gyártmányra nézve. A kikísérletezett technológia pontos betartása biztosíthatja a megfelelő minőséget és az edzési repedés miatti selejt elkerülését.

4.2. Megeresztés

Az optimális paraméterekkel edzett darabok megeresztési technológiáját szintén optimalizálási folyamat eredménye alapján lehet meghatározni. Az előírt szilárdság és ütőmunka figyelembevételével olyan megeresztési hőmérsékletet és időt kell választani, mely mindkét előírást azonos biztonsággal teljesíti.

Előfordulhat, hogyha nem optimalizált az edzés, akkor az előírásokat semmilyen megeresztési technológiával sem lehet teljesíteni. Ugyanis nem található olyan megeresztési hőmérséklet, mely a szilárdság és az ütőmunka előirt értékét együttesen képes biztosítani. Ezért csak optimálisan edzett darabokra lehet a megeresztési technológiát optimalizálni.

Nagyon szigorú követelmények előírása esetén még az is előfordulhat, hogy optimalizált edzés esetén sem alakítható ki olyan megeresztési technológia, mellyel az előírások biztonságosan teljesíthetők. Ilyen esetben javaslatot kell tenni az előírások racionalitásának felülvizsgálatára, illetve ha az előírások ténylegesen szükségesek, akkor más acélminőség alkalmazására kell javaslatot tenni.

5. Kérgesítő hőkezelések

A kérgesítő hőkezelések célja általában az alkatrészek felületi kopásállóságának fokozása, oly módon, hogy az alkatrészek magja szívós, tehát töréssel szemben ellenálló legyen. Ez kétféle elven valósítható meg.

Olyan hőkezeléssel, mely esetén a kémiai összetétel a darabban nem változik, de a hőkezelési állapot, azaz a szerkezet igen. Ilyen esetben a mag szívósságát nemesített állapot biztosítja, a kéreg edzett szerkezete pedig úgy hozható létre, hogy a nemesített darab kérgét lokálisan ausztenitesítik és edzik. Ez lángedzéssel, indukciós edzéssel, elektronsugaras edzéssel, lézeredzéssel, stb. valósítható meg. Legelterjedtebb az indukciós edzéssel történő kérgesítés.

A kérgesítés másik módja a termokémikus kezelés. Ez esetben a darab felületét valamilyen elemmel diffúziósan dúsítják, tehát a mag és a kéreg különböző kémiai összetételű. Ezek közül az eljárások közül legelterjedtebbek a karbon diffundáltatással megvalósított betétedzés, és a nitrogéndiffundáltatással járó nitridálás.