plazmavágás, vízsugaras vágás, gépi fűrészelés, lézervágás

Hőkezelési technológiák

A hőkezelés célja a fémek, ötvözetek bizonyos alaptulajdonságainak, többnyire mechanikai tulajdonságainak módosítása (keménység, szívósság stb.). A hőkezelés alapformulája szerint a fémet felmelegítik adott hőmérsékletre, ott hőntartják, majd meghatározott sebességgel lehűtik. Hőkezelés során a fém mindig szilárd halmazállapotú, az eljárás során összetétele nem változik meg, legfeljebb a felszíni rétegek kissé (van olyan hőkezelés is, amelynek a célja éppen a felületi kéreg összetételének módosítása).


A hőkezelés elemi műveletei az izzítás, az edzés és a megeresztés. Az izzítás az utána következő lehűtés sebessége szerint lehet lágyító vagy normalizáló. Az összetettebb hőkezelési eljárások ezekből az elemi műveletekből állnak.


1. Lágyító hőkezelés

Ha az acél a megkívántnál nagyobb keménységű, a forgácsolhatóság, hidegalakíthatóság stb. érdekében lágyítani kell. Az acél nagyobb keménységét egyrészt a hidegalakított termékalakítási keménysége okozza, másrészt a melegalakítás illetve hőkezelés lehűtése olyan sebességű volt, hogy az acél részlegesen beedződött. A lágyítás tehát hidegalakított termékeknél és főleg ötvözött acéloknál szükséges, melyeknél a melegalakításkor történő levegőn való lehűlés is részleges edződést okozhat.


Lágyító hőkezelés fajtái


1.1. Újrakristályosító lágyítás

A hidegalakított termékek hevítésekor az alakított szemcsék rovására alakítatlan szemcsék fejlődnek. A lágyított termékek tulajdonságait a kialakult szemcseméret határozza meg. Ez pedig a hidegalakítás mértékétől, a hevítés hőmérsékletétől és időtartamától függ. Általában finomszemcsés állapotra kell törekedni, de például trafólemezeknél a mágneses tulajdonságok annál kedvezőbbek, minél durvábbak a szemcsék. Sok esetben részleges lágyítást kell alkalmazni, tehát az újrakristályosítást csak részlegesen kell megvalósítani. Így lehet például a rugókeményre húzott huzalokból félkemény huzalokat előállítani. A lágyítás sikerének ellenőrzésére keménységvizsgálat illetve szakító vizsgálat alkalmazható, alakítási technológiai próbákkal kiegészítve.

 

1.2. Teljes lágyítás

Edzett vagy részlegesen beedződött darabok esetén célszerű lehet az egyensúlyi állapot visszaállítása ha, további forgácsolás vagy hőkezelés szükséges. Ezt teljes lágyítással lehet megvalósítani Az acélt gammaállapotnak megfelelő hőmérsékletre kell hevíteni, majd kemencében lassan lehűteni a gamma-alfa átalakulás befejeződéséig, kb. 600 °C fokig. A lágyulás a hűtési sebességtől függ. Ezt követően levegőn történhet a további hűtés. A teljes lágyítást ötvözött melegalakított termékek forgácsolhatósága érdekében szokták alkalmazni. Sikerének ellenőrzése az előirt Brinell keménység kontrollálásával történik.

 

1.3. A 700 °C fok alatti lágyítás

A készre forgácsolt, de sikertelenül hőkezelt (pld. nemesített) alkatrészeket újabb hőkezelés előtt lágyítani kell. Teljes lágyítás esetén gamma-alfa átalakulás megy végbe, ami méretváltozást illetve vetemedést okozhat. Ezen kívül a nagy hőmérséklet miatt a felületi revésedés illetve dekarbonizálódás is káros lehet. Ezek elkerülésére a lágyítást az ausztenitesedést még nem okozó, nagy hőmérsékleten végzik, hosszabb hőntartással. A lágyulás a hőntartás alatt következik be, az edzett vagy részlegesen beedződött szövet egyensúlyi irányban történő megváltozásával. Ez az eljárás nyilván drágább, mint a teljes lágyítás.


2. Normalizáló hőkezelés

A normalizáló hőkezelés ausztenitesítésből és azt követően levegőn történő lehűtésből áll. Ez ötvözetlen vagy gyengén ötvözött acélok esetében közel egyensúlyi állapotot hoz létre. Természetesen a szerkezet finomabb szemcsés, mint teljes lágyítás után. A normalizálás fő alkalmazási területe a melegalakított (hengerelt, kovácsolt) termékek adagon belüli tulajdonságszórásának mérséklése.

A tulajdonságokat ugyanis a kémiai összetétel és a szerkezet határozza meg. Adagon belül a kémiai összetétel azonosnak tekinthető. A melegalakítási technológiák során viszont az adagon belül az egyes darabok alakítási hőmérséklete, alakítás utáni lehűtési sebessége, stb. lényeges eltéréseket mutathat. Ezért az egyes darabok szerkezete és így tulajdonságai sem azonosak. Az adag darabjait együtt újra ausztenitesítve és azonos sebességgel lehűtve a szerkezet azonossá válik, így a tulajdonságszórás az adagon belül mérséklődik.


A normalizálással létrehozott közel egyensúlyi, de az egyensúlyinál finomabb szemcsés állapot előnyös lehet például a forgácsolhatóság egyenletessége szempontjából is. Az olcsóbb normalizálás így sok esetben helyettesítheti a drágább lágyító technológiákat. Indukciós edzés előtt a finomszerkezet és a mag tulajdonságai szempontjából általában nemesítést alkalmaznak. Mérsékeltebb igények esetén a nemesítés helyettesíthető a sokkal olcsóbb normalizálással.


3. Feszültségcsökkentő hőkezelés

A különböző technológiák alatt a gyártmányokban káros saját feszültségek keletkezhetnek. Ezek két szempontból károsak. Egyrészt hozzáadódnak az üzemi terhelés okozta feszültségekhez, ezzel csökkentik a terhelhetőséget, illetve élettartamot, másrészt hosszú idő alatt a saját feszültségek relaxálása miatt az alkatrész méretváltozása vagy vetemedése következhet be. Célszerű tehát a saját feszültségeket feszültségcsökkentő hőkezelésekkel relaxáltatni.


A feszültségcsökkentő hőkezelés alkalmazási területei


 

- Öntvények saját feszültségeinek relaxáltatása forgácsoló megmunkálás előtt, hogy a vetemedés még a megmunkálás előtt következzen be. 

- Durva forgácsolás utáni és végső megmunkálás közötti feszültségmentesítés, hogy a vetemedés a végső méret kialakulása előtt menjen végbe. 

- Hidegalakított termékek, vagy karcsú termékek hidegalakításos egyengetése utáni relaxáltatás, hogy az alakítási feszültségek relaxációja ne a raktározás vagy felhasználás során következzen be vetemedést okozva. 

- Edzett alkatrészek illetve szerszámok feszültségcsökkentése a makroszkópikus és mikroszkópikus saját feszültségek relaxáltatásával, a törékenység csökkentése illetve az élettartam növelése érdekében. 

- A saját feszültségek leépülése annál gyorsabb és tökéletesebb, minél magasabb hőmérsékleten történik a hevítés. A feszültségek újbóli keletkezésének megakadályozása érdekében a hevítést igen lassú lehűtés kell, hogy kövesse. 

- A relaxáltató hőmérséklet megválasztásánál általános szabály, hogy azt a legmagasabb hőmérsékletet kell választani, melyen még nem mennek végbe egyéb szempontok szerinti káros folyamatok.

 

Ezek alapján az öntvények és hegesztett szerkezetek feszültségcsökkentésére akár 650… 680 °C is alkalmazható, de nemesített termékek esetén nem szabad a megeresztési hőmérséklet fölé hevíteni. Az edzett és hidegalakított termékek már 250 °C fok fölött kezdenek lágyulni, kb. ez tekinthető, tehát a határhőmérsékletnek.


4. Nemesítés

A nemesítés összetett hőkezelés, edzésből és megeresztésből áll. Célja a finomszemcsés, úgynevezett szferoidites szövet előállítása. Ez az edzett szövet megeresztés alatti elbomlásával jön létre. Minél nagyobb a megeresztés hőmérséklete és minél hosszabb a hőntartás, a bomlási folyamat annál tökéletesebb. Ennek hatására a megeresztési hőmérséklet növelésével csökken a keménység és a szilárdság, ezzel szemben nő az ütőmunka és az alakíthatóság. Végül a hőmérséklet növelésével elérhető az edzés hatásának teljes megszűnése, visszaáll a lágyított állapot. Adott acélminőség (kémiai összetétel) esetén a nemesítő hőkezelés paramétereit úgy kell meghatározni, hogy az előirt teljesítendő szilárdság és ütőmunka értéke is megfelelő legyen. Tehát bonyolult optimalizálási feladat megoldása szükséges.


A fém nemesítésének külöböző módozatai


4.1. Edzés

Az edzés ausztenitesítésből és ezt követő edző hatású lehűtésből áll. Az ausztenitesités hőmérsékletét és idejét valamint a lehűtés sebességét kompromisszumos módon lehet meghatározni, adott acélminőség és gyártmány esetében.

 

Az ausztenitesitéssel szemben az lenne a követelmény, hogy minél finomabb szemcsenagyságú és minél homogénebb szerkezet alakuljon ki. Ebből a szerkezetből hozható létre ugyanis a legnagyobb keménységű, de egyben igen finom martenzit, melyből megeresztéssel a legkedvezőbb tulajdonságú finom szferoidit nyerhető. A vázolt követelmény ellentmondást tartalmaz, mert az ausztenit annál homogénebb, minél nagyobb az izzítás hőmérséklete. Ugyanakkor a hőmérséklet növelésével durvul az ausztenit szemcsenagysága. Az ausztenitesités paramétereit tehát esetenként kell optimalizálni, úgy, hogy a megvalósítható hűtési sebesség esetén a legkedvezőbb szerkezet jöjjön létre, melyből megeresztéssel a legkedvezőbb szilárdság/ütőmunka arány hozható létre

 

A lehűlési sebesség illetve program (lépcsős hűtés) szintén optimalizálást igényel. Ugyanis minél nagyobb a lehűlési sebesség, annál nagyobb méretű darabok esetében hozható létre az edzett (martenzites) szövet. Nagyméretű darabok annál vastagabb felületű rétegében teljesülhet ugyanez (átedződés). Ugyanakkor a hűtési sebesség növelésével nő az edzési repedékenység veszélye. Nyilván az edzési repedést még éppen nem okozó maximális hűtési sebességre célszerű törekedni.

Az edzés helyes technológiáját tehát igen sok szempont együttes figyelembevételével lehet meghatározni egy konkrét anyagminőségre és gyártmányra nézve. A kikísérletezett technológia pontos betartása biztosíthatja a megfelelő minőséget és az edzési repedés miatti selejt elkerülését.

 

4.2. Megeresztés

Az optimális paraméterekkel edzett darabok megeresztési technológiáját szintén optimalizálási folyamat eredménye alapján lehet meghatározni. Az előírt szilárdság és ütőmunka figyelembevételével olyan megeresztési hőmérsékletet és időt kell választani, mely mindkét előírást azonos biztonsággal teljesíti.

 

Előfordulhat, hogyha nem optimalizált az edzés, akkor az előírásokat semmilyen megeresztési technológiával sem lehet teljesíteni. Ugyanis nem található olyan megeresztési hőmérséklet, mely a szilárdság és az ütőmunka előirt értékét együttesen képes biztosítani. Ezért csak optimálisan edzett darabokra lehet a megeresztési technológiát optimalizálni.

 

Nagyon szigorú követelmények előírása esetén még az is előfordulhat, hogy optimalizált edzés esetén sem alakítható ki olyan megeresztési technológia, mellyel az előírások biztonságosan teljesíthetők. Ilyen esetben javaslatot kell tenni az előírások racionalitásának felülvizsgálatára, illetve ha az előírások ténylegesen szükségesek, akkor más acélminőség alkalmazására kell javaslatot tenni.


5. Kérgesítő hőkezelések

A kérgesítő hőkezelések célja általában az alkatrészek felületi kopásállóságának fokozása, oly módon, hogy az alkatrészek magja szívós, tehát töréssel szemben ellenálló legyen. Ez kétféle elven valósítható meg.

 

Olyan hőkezeléssel, mely esetén a kémiai összetétel a darabban nem változik, de a hőkezelési állapot, azaz a szerkezet igen. Ilyen esetben a mag szívósságát nemesített állapot biztosítja, a kéreg edzett szerkezete pedig úgy hozható létre, hogy a nemesített darab kérgét lokálisan ausztenitesítik és edzik. Ez lángedzéssel, indukciós edzéssel, elektronsugaras edzéssel, lézeredzéssel, stb. valósítható meg.

Legelterjedtebb az indukciós edzéssel történő kérgesítés.


A kérgesítés másik módja a termokémikus kezelés. Ez esetben a darab felületét valamilyen elemmel diffúziósan dúsítják, tehát a mag és a kéreg különböző kémiai összetételű. Ezek közül az eljárások közül legelterjedtebbek a karbon diffundáltatással megvalósított betétedzés, és a nitrogéndiffundáltatással járó nitridálás.


Írjon nekünk, néhány órán belül felvesszük Önnel a kapcsolatot!

- pár órán belül felvesszük önnel a kapcsolatot -

© 2018 Copyright Inox Service Hungary Kft. | Minden jog fenntartva!